THE UNIVERSITY OF SHEFFIELD

PRESSURE SYSTEMS POLICY
Statement

This University Policy and associated procedures were approved by the Health and Safety Committee 30 May 2019 on behalf of the University of Sheffield Council and forms part of the Health and Safety Policy of the University of Sheffield.

The use of the Management Procedure and the incorporation of its requirements into working practices and activities will ensure that the University of Sheffield and its community achieve compliance with its legal duties with regard to health and safety.

The most recent version of this document can be found at: -

http://www.shef.ac.uk
CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>INTRODUCTION</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>POLICY SUMMARY</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>ROLES AND RESPONSIBILITIES</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3.1 President & Vice Chancellor</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3.2 Director of Health & Safety</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3.3 Faculty Vice- Presidents</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3.4 Directors of Professional Services and Heads of Departments</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3.5 Heads of Departments</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.6 Senior and Project Managers</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.7 Head of Estates and Facilities (EFM) Engineering and Maintenance</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.8 Supervisors/Line Managers & Staff Who Have Equipment Under Their Control</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3.9 Operators</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3.10 Students</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>POLICY</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4.1 Design and Construction</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4.2 Provision of Information</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4.3 Installation</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.4 Safe Operating Limits</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.5 Written Scheme of Examination</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.6 Examination in Accordance With The Written Scheme</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4.7 Action In The Case of Immanent Danger</td>
<td>11</td>
</tr>
</tbody>
</table>
4.8 Operation
4.9 Maintenance
4.10 Modification and Repair
4.11 Keeping Records
4.12 Precautions To Prevent Pressurisation of Certain Vessels
4.13 Safe Disposal of Pressure Systems

5 GUIDANCE

APPENDIX A - DEFINITIONS
1.0 INTRODUCTION

This Policy is aimed at all those with overall responsibility for the safe operation of Pressure Systems, such as Directors, Heads of Department, Managers, Supervisors and Operators. It also applies to those who procure or take possession of and/or dispose Pressure Systems. It sets out what is needed to comply with the Pressure Systems Safety Regulations (PSSR) 2000 and to some extent the Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations. PSSR place duties on those use, own, design, manufacture, supply, import, install or have control over pressure systems.

2.0 PRESSURE SYSTEMS SAFETY REGULATIONS POLICY SUMMARY

It is the policy at the University of Sheffield to provide a safe and healthy working environment for employees, students, visitors and contractors.

The aim of PSSR is to prevent serious injury from the hazard of stored energy, they are concerned with:

- Pressurised hot water above 110 degrees centigrade and steam at any pressure.
- Gases which exert a pressure in excess of 0.5 bar above atmospheric pressure.
- Fluids which may be mixtures of liquids, gases and vapours where the gas or vapour phase may exert a pressure in excess of 0.5 bar or above atmospheric pressure.

With the exception of steam PSSR does not consider the hazardous properties of the contents released due to system failure.

For exemptions see 5.0

3.0 ROLES AND RESPONSIBILITIES

3.1 PRESIDENT & VICE-CHANCELLOR

The President and Vice-Chancellor has ultimate responsibility to ensure that the University of Sheffield is compliant with all statutory health and safety requirements.

3.2 DIRECTOR OF HEALTH & SAFETY

Is responsible for developing the University’s policy, procedures and guidance for the control and management of health and safety and reviewing this Policy and guidance at regular intervals.

3.3 FACULTY VICE-PRESIDENTS

Vice-Presidents are responsible for ensuring the requirements of this Policy are fully implemented and systems are in place to monitor and report on compliance.

Being satisfied that Heads of Department have documented appropriate arrangements, roles and responsibilities for the management of Pressure Systems within their Departmental Health and Safety Policies.
3.4 DIRECTORS OF PROFESSIONAL SERVICES AND HEADS OF DEPARTMENT

Are responsible for ensuring compliance and that staff under their control comply with the provisions set out within this Policy.

3.5 HEADS OF DEPARTMENT

The Heads of Department (HOD) shall ensure:

- One or more Departmental lead person/s is appointed for managing pressure systems and are identified along with roles and responsibilities within the Departmental Health and Safety Policy.
- The lead person maintains a current departmental register of pressure systems for which the Department has overall control.
- The register distinguishes between pressure systems which are fixed, portable and those which are subject of a research experiment.
- Written schemes of examination and examinations in accordance with the written scheme and maintenance/servicing and repair are undertaken by a competent person organised by the Department for portable pressure systems (in most cases this will be undertaken by EFM preferred competent person).
- The register of pressure systems is provided to the Head of Engineering and Maintenance appointed person/s on request.
- They inform the Head of Engineering and Maintenance/appointed person/s before fixed pressure systems are brought into use.

Each new pressure system which is operated by Departmental staff has the following readily available:

- Suppliers/manufacturer’s instructions/manual
- Declaration of conformity
- Commissioning report
- A written scheme of examination
- Statutory examination report
- Maintenance/servicing records
- Written safe operating procedure
- Safe operating limits
- Documented training records for operators
- List of authorised operators
- Risk assessment

Where pressure systems (fixed and portable) are subject of a research experiment the HOD is responsible for ensuring it is safe at all times for use. In all cases (unless otherwise agreed in writing by the HOD) the research equipment will have a written scheme undertaken by a competent person (this may be the supplier/installer) and statutory examination reports in accordance with the written scheme.

The HOD shall ensure pressure systems are not procured without first ensuring a Provision and Use of Work Equipment (PUWER) risk assessment is undertaken.
3.6 SENIOR AND PROJECT MANAGERS

Senior and Project Managers shall ensure that:

- Where pressure systems are installed as part of their Departmental projects that the equipment is designed and constructed from suitable material so as to prevent danger;
- Selected designers, suppliers and installers are competent;
- Designers, suppliers or the employer of a person who installs, modifies or repairs a pressure system provide:
 - Process and instrumentation drawings or flowsheets
 - Safe operating limits for pressure and temperature
 - Design pressure and design temperature
 - Operating Instructions (including emergency procedures) in English
 - Written scheme of examination
 - Maintenance Instructions
 - Test certificates
 - Declaration of conformity
 - Commissioning reports
 - Information in writing (in addition to what is already marked on the vessel), e.g. suppliers operating manuals
 - Training/information regarding maintenance of the equipment is agreed before handover to the Head of Engineering and Maintenance or his nominated representative.
- The departmental nominated operator/s receive training in the safe use/operation of the equipment
- The Senior Project Manager is responsible for ensuring formal handover of the above documentation to the Head of Engineering and Maintenance or his nominated representative before pressure systems are brought into use

3.7 HEAD OF ENGINEERING AND MAINTENANCE

The Head of Engineering and Maintenance shall ensure that:

- One or more Engineering and Maintenance lead person/s is appointed for managing pressure systems and are identified along with roles and responsibilities within the Engineering and Maintenance Health and Safety Policy
- Before allowing newly installed fixed pressure systems (e.g. gas manifold systems) to be brought into use the following is/has been provided to Engineering and Maintenance appointed lead person/s
 - Declarations of conformity
 - Commissioning reports
 - Supplier’s/manufacturer’s operating manual
 - Written schemes of examination
 - Operator training
 - Engineer training for maintenance, servicing, inspection and repair (where done in-house) with documented records readily available on request
• Where maintenance, servicing, inspection and repair is not done by in-house engineers this shall be undertaken by a competent contractor and records made available on request
• Provision of statutory examination reports in accordance with the written scheme
• Pressure systems requiring maintenance and statutory inspection are added to the register of pressure equipment and that each piece of equipment has a unique identifying number

3.8 SUPERVISORS/LINE MANAGERS & STAFF WHO HAVE PRESSURE EQUIPMENT UNDER THEIR CONTROL

Are responsible for ensuring that:

• Pressure systems are only operated by those who are trained and authorised
• Pressure systems are suitable for the intended use and that they inspected, serviced and maintained so as to ensure they remain safe at all times and that documented records are readily available
• Where faulty/defective equipment has been reported/identified that it has suitable warning notices clearly displayed and where appropriate the equipment is isolated to prevent use (until repair/disposal)

That the following are readily available:

• Declarations of conformity
• Commissioning reports
• Supplier’s/manufacturer’s operating manual
• Written schemes of examination
• Training records including content and list of authorised operators
• Safe operating procedures are documented
• Documented operator checklists
• Risk assessments are documented with evidence to demonstrate significant findings have been shared

3.9 OPERATORS

• Only authorised operators may use pressure systems; operators have a duty to cooperate with their employer and ensure it is used safely in accordance with any instruction, information and training provided so as not to cause harm to themselves or others.
• Visually inspect before use to check for faults/defects. Take out of service (and where appropriate isolate equipment) any faulty/defective equipment, display signage indicating the equipment is not to be used and report faults/defects without delay to the relevant supervisor/manager.
• Not to do any maintenance, alterations or repairs unless trained and authorised to do so.
3.10 STUDENTS

The HOD shall not authorise students to use pressure systems without suitable training, risk assessment and supervision being in place.

4.0 POLICY

Each HOD, Director, Manager, Project Manager and Supervisor must be satisfied that systems are in place to ensure that:

4.1 DESIGN and CONSTRUCTION

- Any person who designs, manufactures, imports or supplies any pressure system or any article which is intended to be a component part of any pressure system shall ensure
- The pressure system or article shall be properly designed and constructed from suitable material, so as to prevent danger.
- The pressure system or article shall be designed and constructed so that all necessary examinations for preventing danger can be carried out.
- Where the pressure system has any means of access to its interior, it shall be designed and constructed as to ensure, so far as practicable, that access can be gained without danger.
- The pressure system shall be provided with such protective devices as may be necessary for preventing danger; and any such device designed to release contents shall do so safely, so far as is practicable.

Guidance

Any person who imports a pressure system which does not follow the above requirements shall automatically become the person responsible for compliance. The system could result in injury to staff & students and impact the University.

4.2 PROVISION of INFORMATION

- Any person who designs any pressure system or any article which is intended to be a component part or supplies whether as manufacturer, importer or in any other capacity any pressure system or any such article, shall provide sufficient written information concerning its design, construction, examination, operation and maintenance as may reasonably foreseeably be needed to enable the University to comply with PSSR.

Manufactures of pressure vessels shall ensure that before it is supplied the following information marked on the vessel, or on a plate attached to it, in a visible, legible and indelible form:

- The manufacturer’s name.
- A serial number to identify the vessel
- The date of manufacture of the vessel
- The standard to which the vessel was built
- The maximum allowable pressure of the vessel
- The minimum allowable pressure of the vessel where it is other than atmospheric
- The design temperature

No person shall bring a pressure vessel into use unless it is properly marked.

4.3 INSTALLATION

The employer of a person who installs a pressure system shall ensure that nothing about the way in which it is installed gives rise to danger or otherwise impairs the operation of any protective device or means of inspection.

Guidance

Particular attention should be given to the location of pressure relief devices. In the event of a pressure-relief device operating, the design should enable the contents to be released in as safe a manner as is practicable. It should be designed so as to give safe access and egress.

4.4 SAFE OPERATING LIMITS

The system shall not be operated without the safe operating limits being displayed. The safe operating limits shall be legibly and durably marked on the system and be clearly visible. This shall also be provided in writing (in the operating manual) and form part of the written safe operating procedures.

The user/owner shall not operate the system or allow it to be operated before the safe operating limits have been established.

Guidance

In cases where the user/owner has specified the design, the responsibility for establishing the safe operating limits rests with the user/owner.

The terminology used for different types of systems will vary. For example, the safe operating limit for a boiler may be known as the ‘maximum permissible working pressure’ whereas for an air receiver it may be described as the ‘safe working pressure’. The safe operating limits for refrigeration plant will be expressed in terms of minimum and maximum temperatures. In cases of doubt, or where the information is not clear, further advice should be sought from the manufacturer or other competent organisation.

Note: User is a general term covering all those who specify and manage the use of pressure systems that will be/are University Owned. Owner is the owner of hired pressure systems.

4.5 WRITTEN SCHEME OF EXAMINATION

The user of a system shall not operate the system or allow it to be operated unless there is a written scheme for the periodic examination, by a competent person. The owner of a mobile system shall not allow it to be operated unless there is a written scheme for the periodic examination, by a competent person.
Guidance

The written scheme is drawn up and signed off by a competent person, the written scheme of examination identifies the protective devices, vessels, pipework etc which may give rise to danger which should be examined along with the frequency of examination.

A mobile system is one that has been hired; If you hire a mobile system check with the owner to ensure it has a written scheme before being brought into use. It is the owner’s responsibility to ensure a written scheme for a mobile system is undertaken but your responsibility to check one exists.

The written scheme must be ‘suitable’ in all the circumstances, so it should be reviewed from time to time. It is the user's/owner's responsibility under the Regulations to ensure that the content of the written scheme is reviewed periodically by a competent person.

Guidance

The owner of fixed systems is the Director of EFM or his appointed person.

The owner of portable systems is the HOD or his appointed person.

A mobile system is one that has been hired, it is not owned by the University.

4.6 EXAMINATION IN ACCORDANCE WITH THE WRITTEN SCHEME

Systems must be examined by a competent person within the intervals specified in the scheme and, where the scheme so provides, before the system is used for the first time.

Reports must be provided to the Departmental appointed person within 28 days of the examination being completed.

The Director of EFM or his appointed representative is responsible for ensuring defects for fixed systems are rectified (or equipment removed from service) in a timescale in accordance with priorities identified on the examination report.

The HOD or his appointed representative is responsible for ensuring defects for portable and experimental systems are rectified (or equipment removed from service) in a timescale in accordance with priorities identified on the examination report.

The person/user of a mobile system is responsible for ensuring examination reports are obtained from the owner and the owner corrects any defects.

Equipment must not be operated beyond the date specified in the current examination.

Guidance

For mobile systems the date of the next examination must be marked on the system. A permanent form of marking, such as engraving, is not required. It will generally be sufficient if the date is painted on the equipment.
4.7 ACTION IN THE CASE OF IMMENENT DANGER

If the competent person carrying out an examination under the scheme of examination is of the opinion that the pressure system or part of the pressure system will give rise to imminent danger unless certain repairs or modifications are carried out or unless suitable changes to the operating conditions have been made, then he shall forthwith make a written report to that effect identifying the system and specifying the repairs, modifications or changes concerned and give it to the user.

The user of a pressure system shall ensure that the system (or, if the report only affects a discrete part of the system, that part) is not operated until the repairs, modifications or changes, have been carried out or made.

The person receiving the report shall provide a copy of the report to Health & Safety Department without delay.

4.8 OPERATION

Operators of pressure systems shall be provided with adequate and suitable instructions for:

(a) the safe operation of the system;

(b) the action to be taken in the event of any emergency

Guidance
The instructions should contain all the information needed for the safe operation of the system including:

(a) start-up and shutdown procedures;
(b) precautions for standby operation;
(c) function and effect of controls and protective devices;
(d) likely fluctuations expected in normal operation;
(e) the requirement to ensure that the system is adequately protected against overpressure at all times; and
(f) procedures in the event of an emergency.

More detailed guidance should be referred to in PSSR for particular types of systems.

4.9 MAINTENANCE

The Director of EFM or his appointed person/s must ensure fixed pressure systems are properly maintained so as they do not give rise to danger.

The HOD or their appointed person/s must ensure portable and experimental pressure systems are maintained so as not to give rise to danger. Maintenance records must be documented and readily available.
Guidance
The need for maintenance should not be confused with the requirement for examinations under the written scheme. They are two separate issues although problems identified during an examination under the written scheme may require maintenance to correct. Think of the examination as you would do an MOT for your car and maintenance as servicing.

The type and frequency of maintenance for the system should be assessed and a suitable maintenance programme planned.

4.10 MODIFICATION AND REPAIR

The Head of Engineering and Maintenance and HODs shall ensure no person under their control modifies or repairs a pressure system so as to give rise to danger or otherwise impairs the operation of any protective device or inspection facility.

Guidance
The Head of Engineering and Maintenance and HODs are responsible for ensuring only competent authorised persons repair or modify the pressure systems under their control.

4.11 KEEPING RECORDS

The Head of Engineering and Maintenance and HODs should ensure the following documents are kept readily available at the premises where the system is installed:

(a) any designer’s/manufacturer’s/supplier’s documentation relating to parts of the system included in the written scheme;

(b) any documents required to be kept by the Pressure Equipment Regulations;

(c) the most recent examination report produced by the competent person under the written scheme of examination;

(d) any agreement or notification relating to postponement of the most recent examination under the written scheme; and

(e) all other reports which contain information relevant to the assessment of matters of safety.

4.12 PRECAUTIONS TO PREVENT PRESSURISATION OF CERTAIN VESSELS

This requirement shall apply to a vessel:

(a) which is constructed with a permanent outlet to the atmosphere or to a space where the pressure does not exceed atmospheric pressure; and

(b) which could become a pressure vessel if that outlet were obstructed.

The user of a vessel to which this paragraph applies shall ensure that the outlet referred to above is at all times kept open and free from obstruction when the vessel is in use.

Guidance
The purpose of this regulation is to prevent an unintentional build-up of pressure in a vessel which is provided with a permanent outlet to atmosphere, or to a space where the pressure does not exceed atmospheric pressure.
4.13 SAFE DISPOSAL OF PRESSURE SYSTEMS

Pressure systems and/or equipment that are being disposed of shall be deregistered by informing the Head of Engineering and Maintenance or his nominated person and the HOD or his nominated person.

Equipment must be made safe and if necessary decontaminated and disposed in accordance with the University Recycling and Waste Management Procedures.

5.0 GUIDANCE

Competent person

The term ‘competent person’ is used in connection with two distinct functions:

(a) drawing up or certifying schemes of examination (regulation 8); and
(b) carrying out examinations under the scheme (regulation 9).

The competent person should be suitably qualified and experienced and be independent of the University. Accreditation to BS EN ISO/IEC 17020:2012 is an indication of the competence of an inspection department, organisation or self-employed person.

Accreditation is carried out on behalf of Government by the United Kingdom Accreditation Service (UKAS) (see www.ukas.com). Accreditation to BS EN ISO/IEC ACOP 2 Guidance 2 Health and Safety Executive Safety of pressure systems Page 17 of 69 17020:2012 is recommended for bodies acting as competent persons engaged to draw up or certify a written scheme of examination or conduct examinations for major systems (as detailed in paragraph 98(c)).

Users/owners may also wish to consider using accredited bodies for other categories of system. Accreditation to BS EN ISO/IEC 17020:2012 is voluntary.

When is a written scheme required?

The user/owner should decide, in consultation with a person competent to advise as appropriate, whether a written scheme of examination is required.

Each system should be considered individually, taking into account the exceptions to all or certain regulations detailed in Schedule 1 of PSSR.

The examples given below are for general guidance purposes only and the lists are not exhaustive.

The following types of pressurised systems are likely to require a written scheme of examination:

(a) steam sterilising autoclave and associated pipework and protective devices
(b) steam boiler and associated pipework and protective devices
(c) pressure cooker
(d) gas-loaded hydraulic accumulator, if forming part of a pressure system
(e) portable hot water/steam-cleaning unit fitted with a pressure vessel
(f) vapour compression refrigeration system where the installed power exceeds 25 kW
(g) standard or narrow gauge steam locomotive
(h) the components of self-contained breathing apparatus sets (excluding the transportable pressure receptacle); and fixed LPG storage system supplying fuel for heating in a workplace

The following pressurised systems are unlikely to require a written scheme of examination:
(a) an office hot water urn (for tea making);
(b) a machine tool hydraulic system;
(c) portable oxy-fuel gas welding sets; and
(d) an atmospheric oil storage tank.

http://www.bcga.co.uk/pages/index.cfm?page_id=89

Does my pressure system fall within the scope of PSSR?

The PSSR regulations are complex but broadly speaking, if you have...

Pipework containing a relevant fluid that operates above 0.5 bar pressure (approx 7psi) with protective devices (e.g. a safety valve and/or gas regulator) to which a gas cylinder, cylinders, bulk storage tank or cryogenic vessel is connected

and/or

A pressure storage vessel, including cryogenic storage vessels, with associated pipework and protective devices that has a pressure x volume equal to 250 bar litres or more (multiply the litre volume of your vessel by the pressure at which the primary relief valve operates e.g. 200 litre x 3.5 bar = 700 bar litres) ...you are in the scope of PSSR and need to be compliant.

The following types of pressurised systems are likely to require a written scheme of examination:
(a) steam sterilising autoclave and associated pipework and protective devices;
(b) steam boiler and associated pipework and protective devices;
(c) pressure cooker;
(d) gas-loaded hydraulic accumulator, if forming part of a pressure system;
(e) portable hot water/steam-cleaning unit fitted with a pressure vessel;
(f) vapour compression refrigeration system where the installed power exceeds 25 kW;
(g) standard or narrow gauge steam locomotive;
(h) the components of self-contained breathing apparatus sets (excluding the transportable pressure receptacle); and
(i) fixed LPG storage system supplying fuel for heating in a workplace.

Cryogenic Tanks

Cryogenic tanks are used for the storage of cryogenic liquids. Cryogenic liquids are typically liquefied gases at -150 °C or lower. Common products include oxygen, argon, nitrogen, hydrogen, and helium. Cryogenic tanks are also used for storing gases at higher temperatures, examples of which include liquefied natural gas (LNG), carbon dioxide and nitrous oxide.

These form part of gas supply systems to be used in a wide range of applications, including metal processing, medical technology, electronics, water treatment, energy generation and the food industry. Cryogenic liquids are also used for low temperature cooling applications, such as engineering shrink fitting, food freezing and the storage of bio-samples.

Cryogenic tanks are thermally insulated, typically with a vacuum jacket, designed and manufactured to a high specification following international design codes. They can be fixed, mobile or transportable.

Static cryogenic tanks are designed for use in a fixed location, however this does include those mobile small tanks mounted on wheels for use within workshop and laboratories. Static cryogenic tanks are generally classified as pressure vessels, as such new tanks and their associated systems will be manufactured and put into service in accordance with PSSR. There are also a range of non-pressurised open neck vessels (dewar flasks) available for those applications requiring direct access to the liquid. The tanks come in a range of sizes, pressures and flow rates to meet the users’ varying requirements.

Tanks that are, or are intended to be, used to transport cryogenic liquids have to comply with the Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations.

Use, operation and maintenance of cryogenic tanks

Cryogenic tanks have to be operated and maintained in a manner that complies with all relevant legislation, for example, the PSSR for static tanks or the Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations for transportable tanks. Cryogenic tanks have to be maintained and managed by designated competent persons.

For static tanks the Regulations require cryogenic tanks to undergo regular inspection, routine maintenance and periodic formal examination. The inspection and maintenance regime should be drawn up to ensure the tank is in a safe condition to allow correct operation at all times between the formal examination periods. A Written Scheme of Examination has to be drawn up by a competent person(s) and periodic formal examinations conducted in accordance with the scheme.

Transportable tanks require periodic inspection and testing, this can only be carried out by an inspection body, who in the UK is authorised by the Department for Transport (DfT). Information on the inspection bodies who have been appointed to undertake various functions in connection with the inspection of tanks and/or pressure equipment can be found on the Vehicle Certification Agency (VCA) website.
All inspections, examinations and tests are documented and records have to be kept for the life of the tank.

Users and owners of cryogenic tanks have legal responsibilities and a duty of care to ensure their equipment is maintained and operated safely. The gas suppliers will only fill a tank once they have established that it is safe to do so, refer to BCGA GN 17. BCGA L12 provides advice and guidance on appropriate practice.
APPENDIX A – DEFINITIONS

"pressure system"

means—

(a) a system comprising one or more pressure vessels of rigid construction, any associated pipework and protective devices

(b) the pipework with its protective devices to which a transportable pressure receptacle is, or is intended to be, connected; or

(c) a pipeline and its protective devices, which contains or is liable to contain a relevant fluid, but does not include a transportable pressure receptacle

Useful Links
